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INVERSION OF LAGRANGE'S THEOREPI FOR A RIGID BODY 
WITH A CAVITY CONTAINING AN IDEAL LIQUID' 

V.A. VLADIMIROV and V.V. RUMYANTSEV 

A linear stability analysis is presented for the equilibrium state of a 
rigid body with a cavity completely filled with an ideal incompressible 
liquid possessing surface tension. The Lyapunov technique is used to 
show that the system is unstable if the second variation of the 
potential energy is allowed to take negative values. An estimate is 
derived which guarantees exponential growth of the mean-square 
deviations from equilibrium of the particles of the body and the liquid. 
The analysis employs a Lyapunov functional first defined in /l/. 

1. Lyapwwv functional. A criterion was developed in /l/ for the equilibrium state of 
a rigid body, containing a cavity partly or completely filled with an ideal incompressible 
liquid possessing surface tension, to be unstable. The proof made use of the following 
functional (/l/, p.179): 

Here T and IT are the kinetic and potential energy of the "body plus liquid" system, T1 and 

u, (111) are the kinetic energy of the rigid body and the force function of the applied active 
forces, qj, q1’ 0’ = I, . f -1 n,<6) are the generalized coordinates and velocities of the rigid 
body, T, and us (e, 51) are the kinetic energy of the liquid and the force function of the 
mass forces acting on it, T" is the kinetic energy density of the liquid, 21 (a = i,2,3) are 
the Cartesian coordinates of the liquid particles in a reference frame rigidly attached to 
the body, ut = ax& are the relative velocities of the liquid particles, Asr = 5, -ztO are 
the displacements of the liquid particles relative to their equilibrium position G, CF 
is the region of tzzsss space occupied by the liquid, KPl&&t = q are the projections of 
the absolute velocity of the liquid, and Ifs' is the potential energy of the surface tension 
forces. It is assumed that at equilibrium p# = 0 ($ ; 1, 0 . .) n), 

It will be convenient to rewrite the functional in braces in (1.11 as follows: 

Our attention will be confined henceforth to the first (linear) approximation. We will 
first show that to a first approximation W can be expressed as 

w=Spv.gaz (4.3) 

Throughout this paper the integration is performed over the region of space 'Fl u ‘c 

occupied by the body (zJ and the liquid (Z); g is the vector of displacement from equilib- 
rium of the particles of the body or the liquid. 

Indeed, the derivative of the kinetic energy of the "body plus liquid" system is 
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The radius-vector of a particle of the body relative to the origin of the inertial reference 
frame is 

r=r@j) 
and that of a liquid particle is 

r = r (!7j9 4 

so that the absolute velocity vector of the body is 

(I.51 

and that of the liquid 

Consequently, for points of both body and liquid, 

h/&J/ = h/&Jj 

whence we obtain from (1.41, to a first approximation, 

(1.7) 

(the subscript zero means that the function is evaluated at equilibrium). On the other hand, 
it follows from (1.5t, (1.6) that in the linear approximation the displacement vector $=r-- 

*o relative to the equilibrium position z~ of a particle of the body is 

f=T (-&)o!7j (14 
J=1 

and that of a particle of the liquid is 

But if gS is the displacement vector of a point of the system, considered as a single rigid 
body, then 

where % = 5, for the rigid body and e = %, -I- Ax for the liquid. Hence (1.7) implies a 
representation for the first term on the right of (1.2): 

which immediately implies the reduction of the functional (1.2) to the form (1.3). 

2. Estimate for the gmmth of perturbations. 
is in its equilibrium state fat rest), 

Suppose that the "body plus liquid" system 
but that the potential energy II in this state does 

not have a minimum. We shall deduce from the equations of the first (linear) approximation 
that the system is unstable and give an estimate of the rate at which the perturbations 
increase. 

Let the quantities ~2, Asi, qj, q*r 1 vi, 5s satisfy the linearized governing equations and 
boundary conditions, which are readily derived from those of /I, 
the linear problem is 

2/. The energy integral for 

E = T + II@) = con& (2.1) 

Here T is given by the same expression (1.4), with the integration performed over the 
unperturbed region r U r,, corresponding to the equilibrium state q, = 0, AZ, = 0; II@) is the 
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first (quadratic) term in the expansion of the potential energy n in powers of the dis- 
placements Axi and %i* The form lI@), if expressed in suitable notation, is precisely 
the second variation of the potential energy n /l, 2/. 

Let us assume that the failure of II to have a minimum is such that there exists a 
field of displacements qj*T AX,* such that the second variation of lI is negative, i.e., 

11"' = II* < 0 if (I, -= q,:i-, .\J i = .i.r,* (2.2) 

The fundamental point in our estimate for the growth of the perturbations is the following 
representation for the derivative of W (1.3) with respect to time t/l/, p.180): 

W' = 2(T - W) (2.3) 

Combining (2.1) and (2.3), we get 

W’ = 4T - 2E (2.4) 

On the other hand, using the Cauchy inequality and the representation (1.3), we obtain an 
estimate 

W%&AirSpjadr -2TM, MS Sp:“dr (2.5) 

Using the fact that M' = 2W and the relation (2.4), we obtain from (2.5) a differential 
inequality 

d (M’lM)ldt 3: -4EIM (2.6) 

which, in view of (2.1), can be integrated exactly. The initial data are defined in terms 
of two independent vector-valued functions 

%(x,0) = Y(x), "(X, 0) = V"(X) (2.7) 

The fields p(x), v"(x) must satisfy the obvious conditions for an incompressible 
liquid, which are most simply written down by restating the initial data originally specified 
in terms of qj, qjl', Axi, nt (1.6)-(1-g). The expression obtained upon integrating (2.6) is 
rather awkward. For our present purposes the following coarser estimate of the growth of M 
will suffice. 

Choose the initial data (2.7) so that the value of the energy integral (2.1) is negative. 
To that end, using (2.2) , we take n(a) (0)< 0, 2' (0) < 1 n@) (0)l. Inequality (2.6) now implies 
the 'inequality d(M’lM)fdt>O, and integration of this gives 

M’IM > 2h; h = W (0)/M (0) (2.8) 

Integrating again, we obtain the inequality 

M (t) > M (0) exp (W (2.9) 

Since W(0) is a bilinear form in the fields (2.7), the value of the constant h may 
always be chosen to be positive. Indeed, if the choice of initial data (2.7) yields li < 0, 
we need only change the sign of one of the functions P (x) or v'(x), leaving the other 
unchanged. This operation does not affect the value of E. Thus, by construction, initial 
data always exist implying (2.9) with k>O. \ 

We have thus shown that if Condition (2.2) is satisfied, the equilibrium state of a 
body containing cavities filled with an ideal incompressible liquid having surface tension is 
unstable to a first approximation. The perturbations increase at least exponentially. The 
growth increment of the perturbations has a lower bound set by the quantity h (2.8) which 
depends only on the initial data. 

It is particularly important to determine bounds for the number h. To that end we can 
usefully consider a narrower class of initial data than (2.7), containing a function 5' (x) 
(corresponding to Ax**, q,* (2.2), (1.8), (1.9)) and an arbitrary constant k: 

%(x, 0) = E*(x), v(x, 0) = E&:0) = k%*(x) (2.10) 

For these initial data, it follows from the definition of k (2.8) that h = k, and the 
conditions I>O,E<O imply the bounds 

O<X<A3 1/- 2IP’(O)/M(O) (2.11) 

Thus, in the case of initial data of the class (2.10) the estimate (2.9) may hold for 
arbitrary values of h. in the interval (2.11). 

A special feature of the class (2.10) is that the corresponding k values are the largest 
possible. Indeed, for perturbations with arbitrary initial data (2.7), the definition of h 
(2.8), the Cauchy inequality and the condition E< 0 imply the upper bound h<h 

Remark 1. Since the mathematical aspects of the existence of solutions have not been 
considered here, inequality (2.9) is in the nature of an a priori estimate. 
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Remark 2. A remarkable property of the above estimate for the growth of the perturbations 
is that it was derived independently of the specific form of the second variation of the 
potential energy l-l@'. The only prerequisite for the validity of (2.9) is the existence of 
a perturbation with negative U(S) (2.2) and the truth of (2.3). 

Remark 3. An interesting problem in determining the largest value A+ of the upper 
bound A (2.11) for all kinematiaally admissible fields f*(n) (2.21. Solution of this 
problem would make it possible to determine not only the largest values of h but also to 
ascertain the actual form of those initial data (2.10) most "dangerous" in this respect. 
The variational problem arising here reduces to minimizing the functional II(') conditional 

on M=l. 

Remark 4. Proofs of the instability of the above system in various special cases, using 
methods of spectral theory, may be found in /3, 41'. The formulation of the problem studied 
in /3/ is the same as that considered here, but there the surface tension forces were not 
taken into account. On the other hand, surface tension was considered in /4/ 
the case of a stationary vessel. In /3, 4/ the existence of eigenvalues that 
growth of the perturbations is proved, but without supplying estimates of the 
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A TURBULENT VORTICAL DYNAMO* 

M.A. GOL'DSHTIK and V.N. SHTERN 

The possibility of the spontaneous appearance of rotational motion in a 
half-space above a plane, caused by bifurcation at some Reynolds number 
determining the intensity of the given sources of motion not giving rise 
to external force moments, is studied in the class of selfsimilar 
conical flows of an incompressible fluid of variable viscosity. The 
impossibility of spontaneous rotation is shown for the cases of constant 
viscosity and state of rest, and of weak sources of the basic flow. 
Examples of the bifurcations of the autorotation are constructed for an 
ascending, one-cell motion under the condition that there is no 
rotational friction, and for a two-cell motion with conditions of 
regularity on the axis and adhesion at the fixed plane. In these cases 
the motion is made up of an outer laminar flow, and a turbulent, high 
viscosity kernel near the axis. The examples quoted obviously model 
rotating astrophysical jets, the initiation of a whirlpool, and the 
onset of a firestorm above a plane under the action of a quadrupole heat 
source. 

1. The comept of a VorticaZ dgnamo. We shall use the name “vertical dynamo" to describe 


